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SUMMARY

The incompressible �ow around blu� bodies (a square cylinder and a cube) is investigated numerically
using turbulence models. A non-linear k –� model, which can take into account the anisotropy of
turbulence with less CPU time and computer memory than RSM or LES, is adopted as a turbulence
model. In tuning of the model, the model coe�cients of the non-linear terms are adjusted through the
examination of previous experimental studies in simple shear �ows. For the tuning of the coe�cient
in the eddy viscosity (=C�), the realizability constraints are derived in three types of basic 2D �ow
patterns, namely, a simple shear �ow, �ow around a saddle and a focal point. C� is then determined
as a function of the strain and rotation parameters to satisfy the realizability. The turbulence model is
�rst applied to a 2D �ow around a square cylinder and the model performance for unsteady �ows is
examined focussing on the period and the amplitude of the �ow oscillation induced by Karman vortex
shedding. The applicability of the model to 3D �ows is examined through the computation of the �ow
around a surface-mounted cubic obstacle. The numerical results show that the present model performs
satisfactorily to reproduce complex turbulent �ows around blu� bodies. Copyright ? 2003 John Wiley
& Sons, Ltd.

KEY WORDS: turbulence model; non-linear k –� model; realizability; �ow around a blu� body; Karman
vortex

1. INTRODUCTION

An incompressible turbulent �ow around a blu� body is an important topic for various engi-
neering and scienti�c �elds and has been studied extensively with numerical approaches as
well as experimental ones. Recent rapid advances of computer technology has made it possible
to use some new computational approaches such as LES or DNS. For instance, Murakami [1]
and Murakami and Izuka [2] pointed out the superiority of LES to RANS type models for
the prediction of the �ows around a building. However, RANS type turbulence models, such
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as two equation models or Reynolds stress models, are still valid especially for engineering
purposes because they require less CPU time and computer memory than LES or DNS [3].
Therefore, the clari�cation of the possibility and the limitation of RANS models should be
still paid attention to. From the viewpoint of computational e�ciency and model simplicity,
non-linear k –� models are attractive for the computations of �ows in�uenced by anisotropy of
turbulence. We have veri�ed the applicability of modi�ed non-linear k –� models containing
e�ects of the strain parameter S and rotation parameter � to a �ow with a side-discharge [4],
a �ow around a square cylinder [5] and a compound open channel �ow [6].
It is essential for turbulence models to satisfy the realizability conditions [7]. In this study,

the realizability conditions are examined in three types of 2D basic �ow patterns (the simple
shear �ow, the �ow around a saddle point and the �ow around a focal point), and restrictions
for the coe�cient in eddy viscosity (=C�) are derived on an S–� plane.
The present turbulence model is applied to the �ow around blu� bodies and model per-

formance is discussed. The standard k –� model is also applied for the purpose of compari-
son. The particular �ows presented in this paper are the �ows around a square cylinder and
a surface-mounted cubic obstacle. Both �ows contain separation, reattachment, recirculation
and stagnation. The applicability to the 2D �ow around a square cylinder is examined �rst
focussing on the Karman vortex shedding. The laboratory test conducted by Lyn et al. [8; 9]
is employed as the test case. The 3D behaviour of the present model is tested through the
examination of the calculated results for the �ow around a surface mounted cubic obstacle
studied experimentally by Larousse et al. [10]. In both cases, the computed results are com-
pared with the experimental data for both mean and turbulent quantities.

2. THE NON-LINEAR k –� MODEL

2.1. Basic equations

The basic equations in a k –� model for an incompressible �ow are
(Continuity equation)
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where xi is the spatial co-ordinate, t the time, Ui the averaged velocities, ui the turbulent
velocities, p the averaged pressure, � the density of �uid, k the averaged turbulent energy,
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� the averaged turbulent energy dissipation rate, �t the eddy viscosity coe�cient, � the molec-
ular kinematic viscosity coe�cient and �k , ��, C�1, C�2 are the model constants (�k =1:0,
��=1:3, C�1 = 1:44, C�2 = 1:92 are used).

2.2. Constitutive equations

In the standard k –� model, Reynolds stress tensors are evaluated by the linear constitutive
equation

−uiuj= �tSij − 2
3
k�ij; Sij=

@Ui
@xj

+
@Uj
@xi
; �t =C�

k2

�
(5)

where C� is usually set to a constant (=0:09). Since the standard k –� model does not take into
account the anisotropy of the Reynolds stresses, the model cannot be applied to �ows induced
by the anisotropy, such as the secondary currents of the second kind. This shortcoming can be
overcome to some extent by introducing a non-linear expression in the constitutive equation
(5) as follows [11]:
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Non-linear terms in (6) are equivalent to the following formula with strain and rotation tensors
by Pope [12] and Gatski and Speziale [13].

�1(Sil�lj +�ilSlj) + �2(SilSlj − 1
3 SkmSmk�ij) + �3(�il�lj − 1

3 �km�mk�ij) (9)

where
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The relations of the coe�cients in Equations (8) and (9) are

C1 =−2�1 + �2 − �3; C2 = 2(�2 + �3); C3 = 2�1 + �2 − �3 (10)

The coe�cient C� is now a function of the strain parameter S and the rotation parameter
� used in the previous studies of Pope [12] and Gatski and Speziale [13]:
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2.3. Tuning of coe�cients C1–C3

In coe�cients of the non-linear terms in (6), the C1–C3, should be carefully determined
because they are expected to in�uence the physical accuracy and numerical performance of the
model. In this study, the coe�cients are adjusted through the consideration of the anisotropy
in simple shear �ows reported in previous experimental studies by Champagne et al. [14]
(CHC) and Harris et al. [15] (HGC).
In a simple shear �ow described by

U1 =U1(x2); U2 =U3 = 0;
dU1
dx2

¿0 (12)

the strain parameter becomes equivalent to the rotation parameter as follows:

S=�=M =
k
�
dU1
dx2

; M = max(S;�) (13)

Diagonal components of the dimensionless Reynolds stress tensors are

u1u1
k
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3
+ C�
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3
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The anisotropic tensors mij are de�ned by

mij=
uiuj
k

− 2
3
�ij (15)

The ratio of the turbulence energy production term Pk to the dissipation rate � is

�=
Pk
�
=−u1u2

�
dU1
dx2

=C�M 2 (16)

We have proposed the following values for C1–C3 from our previous studies in compound
open channel �ows [4] and �ows around a square cylinder [5]:

C1 = 0:4; C2 = 0; C3 =−0:13 (17)

Diagonal components of the anisotropic tensor m11, m22, m33 derived from (14), (15) and (17)
are plotted against � in Figure 1 (dotted lines). The agreement with the experimental results
becomes worse with increasing �. We therefore introduce the following functional expressions
for C1–C3.

C1 = 0:4fM (M); C2 = 0; C3 =−0:13fM (M) (18)

where fM (M) is the function

fM (M)=
1

1 + 0:01M 2 (19)
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Figure 1. Comparison between Equations (17) and (18) for C1 –C3.

The relation between mii and � in (18) with (19) is also plotted against � in Figure 1 (solid
lines). The results from (18) and (19) agree with the experimental results better than those
from (17).

3. CONSIDERATIONS OF THE REALIZABILITY

3.1. Realizability inequalities

It is essential for turbulence models to satisfy some realizability conditions [7]. The realiz-
ability inequalities for 3D turbulent �ow �elds are:

uiui¿ 0 (20a)

uiui · ujuj¿ uiuj2 (i �= j) (20b)

det


u1u1 u1u2 u1u3
u2u1 u2u3 u2u3
u3u1 u3u2 u3u3


¿ 0 (20c)

Einstein’s summation rule is not applied in (20). In a 2D averaged �ow �eld, (20c) coincides
with (20b). In this study, the functional form for C�(S;�) is determined through the exami-
nation of the realizability conditions in 2D averaged �ows. In the following, the restrictions
on C� from conditions (20a) and (20b) are derived for three types of basic 2D �ow patterns,
i.e. simple shear �ow, the �ow around a saddle point and the �ow around a focal point.

3.2. Analysis of inequality (20a)

3.2.1. Simple shear �ow. Diagonal components of the Reynolds stress tensors should be non-
negative as

u1u1
k
=
2
3
+
C�(2C1 − C3)

3
M 2¿0 (21a)
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Figure 2. Solution curves at a saddle point (a=d=0, b= c=1).

u2u2
k
=
2
3
+
C�(2C3 − C1)

3
M 2¿0 (21b)

Equation (21a) is satis�ed regardless of M when C1 and C3 are given by (18). Equation
(21b) requires

C�6
2

(C1 − 2C3)M 2 =
2

0:66fM (M)M 2 (22)

3.2.2. Flow around a saddle point. The 2D �ow �eld around a singular point can be described
by

U1 =
dx1
dt
= ax1 + bx2 (23a)

U2 =
dx2
dt
= cx1 + dx2 (23b)

The condition satis�ed at a saddle point is

ad− bc¡0 (24)

Figure 2 shows an example of solution curves and a vector �eld around a saddle point. The
continuity equation applied to (23a) and (23b) can be rewritten as

divV= a+ d=0; V=
(
U1
U2

)
(25)
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and then the eigenvalues 
 and eigenvectors � are given by


=±
√
a2 + bc (26a)
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√
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|c| ; N2 =

√
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√
a2 + bc
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When a=0, two eigenvectors in (26b) become symmetrical for x1-axis and the angle between
two vectors can be arbitrarily changed by moving the values of b and c. If (20a) and (20b)
are satis�ed at a=0, uiui becomes non-negative under the rotation of the co-ordinate system.
Therefore, the following analysis is carried out only in case of a=0.
S and � can be described using a, b, c, d as

S=
k
�

√
(b+ c)2; �=

k
�

√
(b− c)2 (28)

Expressions (24) and (28) and a=0 yield the relation

bc=
�2

4k2
(S2 −�2)¿0 (29)

which indicates an inequality between S (¿0) and � (¿0) where

S¿� (30)

Then, u2u2 can be described using S and � as

u2u2 =
2
3
k +

1
3
C�kC1

[{
3
4
(S ±�)2 − 1

2
(S2 + �2)

}

+
1
4
C2(S2 −�2) + C3

{
(S2 + �2)− 3

4
(S ±�)2

}]
(31)

(i) When the double signs in (31) are positive: Equation (31) can be rewritten in the form

u2u2
k
=
2
3
+
1
3
C�[E1S2 + E2�2 + E3S�]¿0 (32)

where

E1 =
C1 + C2 + C3

4
; E2 =

C1 − C2 + C3
4

; E3 =
3(C1 − C3)

2
(33)

When (18) and (19) are substituted into (32) and (33), (21b) is always satis�ed regardless
of S and �.
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Figure 3. Solution curves at a focal point (a=d=0, b=1, c=−1).

(ii) When the double signs in (31) are negative: Equation (31) can be rewritten in the
form

u2u2
k
=
2
3
+
1
3
C�f(S;�)¿0; f(S;�)=E1S2 + E2�2 − E3S� (34)

When f(S;�)¿0, the constraint in (21b) is always satis�ed. When f(S;�)¡0, (21b) requires

C�6− 2
f(S;�)

(35)

and −f(S;�) becomes maximum in the limit of �→ S, so that

−f(S;�)= (C1 − 2C3)M 2 (36)

Inequality (35) with (36) coincides with the constraint in (22) in the simple shear �ow.
The constraint in u1u1 can be proved to be equivalent to that in u2u2.

3.2.3. Flow around a focal point. At a focal point, the eigenvalues 
 in (26a) become pure
imaginary numbers. Hence, the relations between a, b, c and d at a focal point are

a+ d = 0 (37a)

ad− bc¿ 0 (37b)

Figure 3 shows an example of solution curves and a vector �eld at a focal point. Equation
(37a) coincides with the continuity equation (divV=0). The following analysis is carried out
for case a=0 in the same way as the analysis at a saddle point. The inequality between S
and � becomes

S¡� (38)
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The constraint in a focal point coincides with (35) under restriction (38). In the limit of
S → �, the constraint agrees with Equation (22) in a simple shear �ow.
The constraint in u1u1 is equivalent to that in u2u2.

3.3. Analysis of inequality (20b)

3.3.1. Simple shear �ow. The Reynolds stress component u1u2 is

u1u2
k
=−C�M; M = max(S;�) (39)

Equation (20b) for the case (i=1; j=2) becomes

C2�[9S
2 + (2C21 + 2C

2
3 − 5C1C3)S4]− C�2(C1 + C3)S2 − 460 (40)

which places the following restriction on C�:

C�6
(C1 + C3)S +

√
(C1 + C3)2S2 + 4[9 + (2C21 + 2C

2
3 − 5C1C3)S2]

9S + (2C21 + 2C
2
3 − 5C1C3)S3

(41)

3.3.2. Flow around a saddle point. Reynolds stress components u1u1, u2u2 and u1u2 can be
described using S and � as

u1u1
k
=
2
3
+
1
3
C�[C1A1 + C2A2 + C3A3] (42a)

u2u2
k
=
2
3
+
1
3
C�[C1A3 + C2A2 + C3A1] (42b)

u1u2
k
=∓C�S (42c)

where

A1 = 1
4 (S

2 + �2)∓ 2
3 S�; A2 = 1

4 (S
2 −�2); A3 = 1

4 (S
2 + �2)± 2

3 S�; S¿� (43)

From (42) and (43), the realizability inequality (20b) becomes

[9S2 − (C1A1 + C2A2 + C3A3)(C1A3 + C2A2 + C3A1)]C2�
− 2[(A1 + A3)(C1 + C3) + 2A2C2]C� − 460 (44)

The left-hand side of (44) becomes zero when

C�1 =
(A1 + A3)(C1 + C3) + 2A2C2 −

√
[(A1 + A3)(C1 + C3) + 2A2C2]2 + 4B1
B1

(45a)

C�2 =
(A1 + A3)(C1 + C3) + 2A2C2 +

√
[(A1 + A3)(C1 + C3) + 2A2C2]2 + 4B1
B1

(45b)
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Figure 4. Realizability conditions in Equation (20a) for C� on an S –� plane.

where

B1 = 9S2 − (C1A1 + C2A2 + C3A3)(C1A3 + C2A2 + C3A1) �=0 (46)

When C1, C2 and C3 are given by (18) and (19), B1 is always positive. Therefore, (44) yields
the following restriction for C�:

C�6C�2 (47)

3.3.3. Flow around a focal point. At a focal point (S¡�), the restriction from realizability
(20b) takes the same form as the result at a saddle point in (47) with (45b) and (46).

3.4. Constraints for C� on a S–� plane

Realizability conditions for (20a) and (20b) in the simple shear �ow, the �ow around a
saddle point and the �ow around a focal point are plotted on a S–� plane in Figures 4 and 5,
respectively. To satisfy the realizability, C� should be lower than the curved surface in these
�gures. These �gures indicate that the model with constant C� (=0:09) does not satisfy the
realizability constraint. When C�(S;�)=C�(M) is assumed, the constraint in the simple shear
�ow (M = S=�) becomes very restrictive. The constraints in the simple shear �ow in each
equation are shown in Figure 6 in solid lines.
In this study, the following two forms for C� are tested:

C�(M) =min
[
0:09;

0:3
1 + 0:4M

]
(48)

C�(M) =min
[
0:09;

0:3
1 + 0:09M 2

]
(49)
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Figure 5. Realizability conditions in Equation (20b) for C� on an S –� plane.
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Figure 6. Relation between C� and M in a simple shear �ow.

where C�(M) in both Equations (48) and (49) satis�es inequality (20a) and takes a constant
value (=0:09) in �ows which satisfy the log-law, as discussed later. Note that C�(M) in (48)
does not satisfy inequality (20b).

3.5. C�(M) in the log-law region

We examine the characteristics of the function C�(M) in (48) and (49) in the log-law region.
The velocity distribution of the �ow in a log-law region on a smooth bed is described as

U (y)
U∗

=
1
�
ln y+ + AS; y+ =

yU∗
�

(50)
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Figure 7. Relation between M and y=h in the velocity distribution in the log-law region.

where U∗= the friction velocity, �=0:41 and As=5:3. Nezu and Nakagawa [16] suggested
the following semi-theoretical formulae for k and � in open channel �ows:

k
U 2∗

=4:78 exp
(
−2y
h

)
(51a)

�h
U 2∗

=9:76
exp(−3y=h)√

y=h
(51b)

where h is the depth. From Equations (50) and (51), a relation between M (= S=�) and
y=h is derived as

M =0:346
1
�

√
h
y
exp

(y
h

)
(52)

Figure 7 shows a plot of the relation in (52). When the order of the Reynolds number is
103 –105, the range of M becomes 2–5. From (48) and (49), it is seen that in this log-law
region, C�(M) takes the constant value of 0.09.

4. APPLICATION OF THE TURBULENCE MODEL TO THE 2D FLOW AROUND
A SQUARE CYLINDER

4.1. Outline of the calculated �ow �eld

To verify the performance of the present turbulence model, it is applied to a 2D �ow around
a square cylinder with Karman vortex shedding. Numerical simulations are performed un-
der the conditions of the laboratory test by Lyn et al. [8; 9], which was conducted in
closed water channel (for Re=2:2× 104). The �ow domain in the calculation is shown in
Figure 8.
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Figure 8. Computational �ow domain for the square cylinder problem.

4.2. Turbulence models

The following four turbulence models are tested:

Run 1 (Standard k –� model): The Reynolds stress tensors are evaluated as in Equation (5)
with a constant value of C� (= 0:09).
Run 2: The Reynolds stress tensors are evaluated by non-linear equations (6)–(8), in which

all model coe�cients are set to be constants (see (17)):

C1 = 0:4; C2 = 0; C3 = −0:13; C� = 0:09 (53)

Run 3: The coe�cients C1, C2, C3 and C� in Equation (6) are evaluated as functions of
strain parameter S and rotation parameter � in (18), (19) and (48) as follows:

C1 =
0:4

1 + 0:01M 2 ; C2 = 0; C3 =
−0:13

1 + 0:01M 2 ; C�=min
(
0:09;

0:3
1 + 0:4M

)
(54)

Run 4: The coe�cients in Equation (6) are evaluated in (18), (19) and (49) as follows:

C1 =
0:4

1 + 0:01M 2 ; C2 = 0; C3 =
−0:13

1 + 0:01M 2 ; C�=min
(
0:09;

0:3
1 + 0:09M 2

)
(55)

The di�erence between Runs 3 and 4 is only in the functional form for C�(M).

4.3. Discretization of the basic equations

The basic equations were discretized using the �nite volume method on a staggered grid with
the MAC method [17]. The QUICK scheme was applied to the convection terms and central
di�erencing was used for the di�usion terms in the momentum equations. A Hybrid central
upwind scheme [18] was applied to the k and � equations. The equations were discretized in
fully explicit form. The second-order Adams–Bashforth scheme was used for time integration
of each equation. The pressure �eld was solved using an iterative procedure at each time step
via the SOLA algorithm [19].

4.4. Boundary and initial conditions

The numerical grid used in the calculation is a stretched rectangular one shown in Figure 9.
Franke et al. [20] pointed out that the distance of the �rst grid point away from the wall has
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Figure 9. Numerical Grid.

a particularly strong in�uence on the results. Taking into account the use of the wall function
approach, the �rst grid point should be placed out of the viscous sub-layer. In this study, the
smallest distance of the grid lines near the cylinder is chosen to be 2mm (=D=20) based on
some previous calculations. Under this condition, the maximum value of the dimensionless
distance y+(=U∗�=�, U∗: the friction velocity, �: the distance between the side-wall and the
�rst de�nition point of the velocity) at the side-wall of the cylinder becomes around 40. The
maximum stretching of successive cells is limited to 0:96qx, qy61:1, where qx=�xi=�xi−1
and qy=�yj=�yj−1 to suppress the in�uence of grid stretching. The number of the grid-
points is 112 in x direction and 92 in y direction.
The wall function approach was taken for the wall boundary conditions. At the down-stream

end of the computational domain, a zero streamwise gradient was speci�ed for velocities, k
and �. At the inlet boundary, the level of k was chosen to match the turbulence levels (=2%)
in the experiment by Lyn et al. The value of � at the inlet was determined from the value
of k at the inlet by Equation (5) after specifying the ratio �t=�=10 [21].
At the beginning of the calculations, U =U0 = 55cm=s, V =0, k= kin and �= �in (kin and �in

are the values of k and � at the inlet boundary) were speci�ed over the whole computational
domain as initial condition.

4.5. Numerical results

In all sets of the calculated results, Karman vortex shedding was generated. The
Strouhal number (St=fD=U0, f: frequency) of the vortex shedding in all Runs was within
the range 0.144 – 0.146 and was about 11% larger than the experimental measured result
(St=0:13).
Figure 10 shows the distribution of the non-dimensional velocity component U=U0 along

the x-axis. The length of the recirculation zone calculated in Run 1 is too long and the
recovery of the velocity at the downstream region of the recirculation zone is too slow. The
recirculation zone in Run 2 is a little larger than the experimental one. On the other hand,
Run 3 underpredicts the length of the recirculation zone. Run 4 accurately calculated not only
the length of the recirculation zone but also the whole distribution of the velocity. For further
evaluation of the present model, the result by Run 4 is compared with the result by the RNG
non-linear k –� model by Yakhot et al. [22] in Figure 11. In the RNG model, the following
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Figure 10. U=U0 on x-axis for Runs 1–4.
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Figure 11. U=U0 on x-axis for Run 4 and RNG model [22].

term is added to the right-hand side of � Equation (4):

−C�S
3(1− S=S0)
1 + �S3

�2

k
(56)

where C�=0:085, �=0:012 and S0 = 4:38. The constants in k and � equations have been
determined without any ad hoc approaches through RNG (renormalization group) theory as
C�1 = 1:42, C�2 = 1:68, �k =��=0:719. The RNG model underpredicts the length of the recir-
culation behind the cylinder. However, it reproduces the pro�le of U=U0 at x=D¿2:5 well.
The comparison of the non-dimensional turbulence energy k ′ (=k=U 2

0 ) is shown in
Figure 12. The calculated values of k ′ in all models are considerably smaller than the
experimental one. Similar discrepancies of k are indicated in the 2D calculations with a
linear k –� model by Bosch and Rodi [21] and with RSM by Franke and Rodi [23]. Bosch
and Rodi [21] pointed out that the low-frequency modulation due to 3D large-scale structure
in the laboratory test cannot be captured by the 2D calculations, and the calculated k ′ thereby
becomes much smaller than the experimental one.
The distribution of k ′ near the impinging region in Figure 12 is enlarged in Figure 13.

Runs 1 and 2 have large values of k ′ just before the impinging region. The production of k
in Runs 3 and 4 is suppressed. This �gure demonstrates that the non-linear k –� model with
the e�ects of S and � can suppress the excessive production of k near the impinging region
and the second-order non-linear terms in (6) have no e�ect on suppression.
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Figure 12. k ′= k=U 2
0 along x-axis.
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Figure 13. k ′= k=U 2
0 along the x-axis near the impinging region.

Figure 14. (a) Distribution of k ′ around the cylinder: (a) Run 1; (b) Run 2;
(c) Run 3; and (d) Run 4.
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(a)

(b)

Figure 15. k ′px and k ′py along the x-axis: (a) Runs 1 and 2; (b) Runs 3 and 4.

Figures 14(a)–14(d) show the distributions of time-averaged turbulence energy k ′ near the
cylinder. The distributions from Runs 1 and 2 are similar and have two peaks at the side and
near the leading edge of the cylinder. In the results of Runs 3 and 4, values of k ′ around the
cylinder are smaller than those of Runs 1 and 2.
Figure 15(a) and 15(b) show the periodic part of the non-dimensional �uctuation energies

in x-component, kpx, and in y component, kpy, along the x-axis. Every model overpredicts
the peak value of kpx. Run 4 particularly gives very large values of kpx compared with the
experiment. In the temporal variation of the streamwise velocity of Run 4, considerable devi-
ation from periodicity was detected (Figure 16). It is assumed that the excessive production
of kpx of Run 4 is caused by the irregularity of the velocity �uctuations. As for kpy, the peak
value of Run 1 is very small and that of Run 2 is also a little smaller than the experimental
value. Runs 3 and 4 predicted the peak value of kpy well and the longitudinal distribution of
Run 4 was in good agreement with experiment over the whole region of the plot.
Figure 17 shows the comparison of the non-dimensional total �uctuation energy k ′t (periodic

part + turbulence part) along the x-axis. The outcome of Run 1 is signi�cantly smaller than
the experimental one. Although the peak value of Run 4 is slightly larger than that of the
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Figure 16. Temporal variation of U (Run 4, at x=D=6).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

-2.0 0.0 2.0 4.0 6.0 8.0

x/D

kt
′

Exp.

Run 1

Run 2

Run 3

Run 4

Figure 17. Total �uctuation energy along the x-axis for Runs 1–4.
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Figure 18. Total �uctuation energy along the x-axis for Run 4 and RNG model [22].

experiment, the computations of Run 4 reproduces the distribution of total �uctuation energy
very well. Figure 18 shows the comparison of the results of Run 4 and the RNG model [22].
This �gure shows that the RNG model signi�cantly overpedicts the total �uctuation energy
behind the cylinder.
The drag coe�cient CD and the lift coe�cient CL are important parameters in the �ows

around blu� bodies. In this case, the time-mean lift coe�cient in each Run becomes zero
because the time-mean �ow is symmetrical for the x-axis. The drag coe�cients in averaged
�ow �elds of di�erent turbulence models are listed in Table I. This table shows that the
turbulence models that underpredict the length of the recirculation behind the cylinder, yield
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Table I. Drag coe�cients of di�erent turbulence models.

Run 1 Run 2 Run 3 Run 4 Experiment

Drag coe�cient CD 1.66 1.93 2.05 2.09 2.1

Table II. Calculation times for di�erent turbulence models (beginning with the initial conditions).

Run 1 Run 2 Run 3 Run 4

CPU time (s) 4982 3131 3609 3645
Rate against Run 1 1.00 0.63 0.72 0.73

Table III. Calculation times for di�erent turbulence models (beginning from t=120 s).

Run 1 Run 2 Run 3 Run 4

CPU time (s) 1848 2202 2231 2391
Rate against Run 1 1.00 1.19 1.21 1.29

a smaller value of CD. The value of CD of Run 4 is in good agreement with the experimental
data.
The numerical results in the 2D �eld indicate that the non-linear model of Run 4, which

is the only realizable of the 4 models employed here, simulates most accurately both the
mean and unsteady �ow features with vortex shedding. The model of Run 4 reproduces
the total �uctuation energy well, though the model underpredicts the turbulence energy. It
should be noted that the division of the energy between the turbulence and directly simulated
components in Run 4 disagrees with the division between the random and periodic components
in the laboratory test.
The computational times for di�erent turbulence models are also investigated as shown in

Tables II and III. The computational times for the period of one vortex shedding (=0:5 s)
are measured on an IBM compatible personal computer (CPU: Pentium IV, 1:8 GHz, RAM:
256MB). Table II shows the computational times beginning from t=0s (the initial conditions)
and Table III shows those beginning from t=120 s (fully periodic phase). Table II shows
that the computational time for Run 1 is the largest in spite of its simplicity. The reason is
as follows. It has been pointed out that one of the shortcomings of the standard k –� model is
its large numerical viscosity. At the beginning of the calculation from the initial conditions, a
separation bubble is formed behind the cylinder. During this process, the pressure �eld behind
the cylinder changes rapidly. The calculation of Run 1 requires much time for the iteration
of the pressure �eld during this process because of its large numerical viscosity. Since the
calculation times in Table III are in fully periodic phase and are not a�ected by the initial
conditions, those values re�ect the complexity of the models. The di�erence in the calculation
times between Runs 1 and 2 is due to the presence of the second-order terms in Run 2. Runs
3 and 4 take more calculation time than Run 2 because they require the calculation of the
strain and rotation parameters.
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Figure 19. Plane and vertical view of the �ow domain for the 3D cubic obstacle.

5. 3D CALCULATIONS OF THE FLOW AROUND A SURFACE-MOUNTED
CUBIC OBSTACLE

5.1. Experimental data

The �ow around a surface-mounted cubic obstacle has full 3D characteristics with separa-
tion and reattachment. The �ow is therefore suitable for the testing of turbulence models.
In this study, the LDA measurements of the �ow around a surface-mounted cube performed
by Larousse et al. [10] were employed to assess. The plane and vertical sections of the
�ow domain in the laboratory test are shown in Figure 19 (h=5 cm and H =2:5 cm).
The Reynolds number based on the channel height (Re=U0h=�, U0 = the bulk velocity)
is 105.

5.2. Outline of the numerical procedure

The numerical procedure in the 3D computation is the same as the one used in
the 2D computation described in Section 4.3, except the spatial dimension of the basic
equations.
The numerical grid used in the calculation is a stretched rectangular one. The smallest

distance of the grid lines near the cube is 1:25 mm (=H=20). The number of the grid-points
is 69 in the x direction, 26 in the y direction and 52 in the z direction. The length of the
�ow domain upstream of the cube is X1 = 5H , and downstream of the cube is X2 = 14H (The
de�nition of X1 and X2 is shown in Figure 19).
Three turbulence models, i.e. those of Runs 1, 2 and 4 described in Section 4.2 are employed

in the calculations.
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Figure 20. Flow patterns in the vertical section along the x-axis: (a) experiment and (b) calculation.

5.3. Numerical results and discussion

Figure 20 shows the comparison of �ow patterns for a vertical section along the x-axis. In the
experimental measurements, a recirculation zone is generated in the downstream region of the
cube and the reattachment point of the separated �ow is near x=H =3. Another recirculation
is generated at the top-surface of the cube. In the numerical results, the recirculation at the
top-surface of the cube was reproduced only by Run 4 and the other two models could not
reproduce it. The reattachment length at the downstream of the cube by Run 4 is slightly
longer than that in the laboratory test.
Figure 21 shows the distributions of turbulence energy k around the cube in the numerical

results. The turbulence energy at the front of the cube by Run 4 is much smaller than those
of Runs 1 and 2. The e�ect of the suppression of k near the impinging region by Run 4,
which was also pointed out in 2D calculation around a cylinder, is observed again in this
�gure. The maximum points of the turbulence energy by Runs 1 and 2 are located near the
front corner of the cube, but those for Run 4 can be seen near the rear corner. Figure 22
shows the distributions of dimensionless turbulence energy k ′ (= k=U 2

0 ) in y–z plane in the
downstream region of the cube (x=H =1:25). This �gure also demonstrates the in�uence of
turbulence modelling in the distribution of turbulence energy. The values of Runs 1 and 2 are
smaller than the experimental data because the maximum points are shifted to the upstream
direction. The distribution of k ′ of Run 4 is in good agreement with the experiment.
Figure 23 shows the �ow patterns for the two cross-sections at x=H =1:75 and x=H =5:3.

In the experimental measurements at x=H =1:75, a vortex in a clockwise direction, which is a
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Figure 21. Turbulence energy distributions around the cube along the
x-axis: (a) Run 1; (b) Run 2 and (c) Run 4.

part of the horseshoe vortex, formed around the cube, having been generated near the bottom.
In the section at x=H =5:3, the vortex becomes much larger than that at x=H =1:75. Run 1
does not reproduce these cross-sectional vortex pattern. In the results of Run 2, the vortex is
generated but is much smaller than that of the experiment. The calculated results of Run 4
are in good agreement with the experimental data.
The �ow geometry with a cube presented here is simple but the �ow generated around the

cube is rather complex. The numerical results show that the realizable turbulence model of
Run 4 is useful for predicting 3D complex turbulent �ows with separation and reattachment
around blu� bodies.

6. CONCLUDING REMARKS

A second-order, non-linear k –� model, which includes some new considerations of realizabi-
lity, is developed to predict �ows around blu� bodies. The constraint of realizability, i.e. the
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Figure 22. Turbulence energy distributions in the y–z plane at x=H =1:25:
(a) Experiment; (b) Run 1; (c) Run 2 and (d) Run 4.

non-negativity of the normal Reynolds stresses and the Schwarz’ inequality between turbulent
velocity correlations are derived for a simple shear, a saddle point and a focal point con�g-
uration. The coe�cient C� is tuned as a function of the Strain parameter and the Rotation
parameter to satisfy realizability. The coe�cients of the non-linear terms, C1, C2 and C3,
were also calibrated carefully through the consideration of anisotropy of simple shear �ows
reported in experimental �ow studies.
For the examination of the model performance, the turbulence model was applied to the 2D

�ow around a square cylinder and the 3D �ow around a surface-mounted cubic obstacle. In
the 2D calculation, the present model could reproduce the Karman vortex formation and the
predicted total �uctuation energy due to the vortex shedding was in close agreement with the
experiment, although the division of the energy between the turbulence and directly simulated
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Figure 23. Cross-sectional �ow patterns (upper: x=H =1:75, lower: x=H =5:3):
(a) Experiment; (b) Run 4; (c) Run 1 and (d) Run 2.

components disagrees with the division between the random and periodic components in the
laboratory test. In the 3D calculation around a cube, the complex �ow features with separation
and reattachment at each surface are qualitatively simulated. The calculated results, which are
encouraging in both cases, show the applicability of the present model for the calculation of
complex turbulent �ows around blu� bodies in various engineering set-up.
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